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Energy conservation and constants variation

L. Kraiselburd1,2, M.M. Miller Bertolami1,2, P. Sisterna3, and H. Vucetich1
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Abstract. If fundamental constants vary, the internal energy of macroscopic bodies should
change. This should produce observable effects. It is shown that those effects can produce
upper bounds on the variation of much lower than those coming from Eötvös experiments.

1. Introduction

The Standard Model of Fundamental
Interactions (SM) together with General
Relativity (GR) describe all low-energy (i.e.
E < EP) and short-scale (i.e. L < 100 kpc)
physics, in good agreement with experiment
and observation (Particle Data Group et al.
2008). These theories depend of a set of
parameters called fundamental constants,
that are assumed independent of space and
time. The Equivlence Principle implies such
invariance and so, the discovery of changes in
“Fundamental Constants” imply the existence
of “new physics”. Indeed, many theories
attempting the unification of SM and GR, such
as Kaluza-Klein or Superstring theories, pre-
dict such variations. Variation of “fundamental
constants” should produce a multitude of
observable phenomena that may be used to test
theories against observation. Several of these
have been used already (Sisterna & Vucetich
1990); among the latest let us mention the
Oklo phenomenon (Fujii 2004), spectra in
absorption systems (Murphy et al. 2004), com-
parison of atomic clocks (Fortier et al. 2007),
early Universe data (Landau et al. 2008) and
Eötvös experiments (Chamoun & Vucetich
2002; Kraiselburd & Vucetich 2009).

We examine in this comunication some
possibilities of testing these theories based
on consequences of conservation laws, mainly
energy-momentum conservation. This is be-
cause if a known electromagnetic system in-
teracts with some other unknown one, the bal-
ance of the conserved quantity will be altered
with respect to the known conservation law
and some large unexpected phenomena should
manifest.

2. Variation of α in Bekenstein’s
formalism

Bekenstein’s model (Beckenstein 1982;
Bekenstein 2002) is a well-defined theory for
the variation of the “fine-structure constant”. It
may be considered a low energy limit of some
string theory, since it satisfy the most impor-
tant conditions that such a limiting theory
should have. The theory is lagrangian-based
and so it has well defined conservation laws
for energy-momentum and charge. Let us
briefly review its content. The theory is based
on several postulates, embodying physical
assumptions:

1. It must reduce to Maxwell’s theory when α
is constant.
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2. α variationn is dynamic, generated by a
field ε = expψ, the latter field being a
mock dilaton.

3. All dynamics should be derived from a
variational principle.

4. The theory must be causal and gauge and
time reversal invariant.

5. Planck’s scale `P is the smallest one in the
theory.

All these assumptions, except the last one, have
to be satisfied for any low energy limit of a
string or Kaluza-Klein theory.

From these equations, the following action
can be derived

S = − 1
16π

∫
FµνFµν

√−gd4x

− ~c
2`2

B

∫
ε ,µε,µ

ε2

√−gd4x (1)

+S RG + S m

where `B is a new parameter with dimension
of length, that we shall call Bekenstein length.
The main difference between Maxwell and
Bekenstein theories is due to the connection
between the vector potential Aµ and the fields:

εA′µ = εAµ + f,µ
∇µ = ∂µ − e0εAµ (2)

Fµν =
1
ε

[
(εAν),µ − (εAµ),ν

]

while the charge and the ε field are connected
in the form

e(r, t) = e0ε(r, t)

ε(r, t) =

(
α

α0

) 1
2

(3)

In the above equations e0 (α0) are reference
values corresponding to a certain event in
space-time, where ε = 1. From the above ac-
tion the following equation of motion can be
found(

1
ε

Fµν

)

,ν

= 4π jµ (4)

and

� ln ε =
`2

B

~c

(
ε
∂σ

∂ε
− FµνFµν

8π

)
(5)

where σ is the electromagnetic energy density
of matter (Beckenstein 1982). From the above
equations one can find a solution for the cos-
mological variation of ε

ε̇

ε
= −3ζc

8π

(
`B

`P

)2

H2
0ΩB

[
a0

a(t)

]3

(t − tc) (6)

ε̇

ε

∣∣∣∣∣
0
' 1.3 × 10−5

(
`B

`P

)2

(7)

As equation (7) shows, the predicted varia-
tion is small and large accuracy will be neces-
sary to detect it.

3. Energy transfer in Bekenstein’s
formalism

From the action (1) the following energy-
momentum tensor can be derived in the usual
way

T µν =
1

4π

(
Fλ
µFλν −

ηµν

4
FλσFλσ

)

+
~c
`2

B

(
ε ,µε ,ν

ε2 − 1
2
ηµν

εαεβ

ε2

)
(8)

+ T µν
m

where we have assumed a locally flat space.
The energy-momentum conservation law

takes the form

T µν
,ν = −ε jαFµα

+ φ,ν

(
ηµνε

∂σ

∂ε
+ T µν

em −
ηµν

16π
FλσFλσ

)

+ T µν
m ,ν = 0 (9)

The first line represents the Joule effect, the
second line is the energy-momentm balance
between the electromagnetic field, the ε field
and matter. The second term is responsible for
any unaccounted energy liberation.

The T00 component represents the energy
transfer between the fields and matter. Using
the equations of motion and expressing in
terms of the field components E, B we find

∂em

∂t
+ divq = j · E +

α̇

α
ε
∂σ

∂ε
(10)

− α̇

α

B2

16π
− 1

2
∇α
α
·S (11)
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where em is the matter energy density, q the
energy current (heat flow) and S is Poynting’s
vector. It is easy to show that

∂em

∂t
=
α̇

α
ε
∂σ

∂ε
(12)

since em ∝ ε. It is important to note that elec-
tric energy density does not contribute to the
energy transfer to matter and that space vari-
ation of α contributes to the transfer to/from
a radiant system. The most important conclu-
sion from equation (10) is that the cosmologi-
cal time variation of α contributes to the liber-
ation of energy only through the magnetic en-
ergy density of matter.

4. Magnetic energy of matter

To compute the magnetic energy of matter we
must take into account that the main contribu-
tion arises from quantum fluctuations of cur-
rents in nuclear atomic systems. From the Biot-
Savart law

A =
1
c

∫
dx′

j(x′)
|x − x′| B = rot A (13)

where j, A, B are quantum operators. Besides,
in nonrelativistic limit quantum mechanics

j = e
p

2m
+ g

e
mc

s× p̂ (14)

with e the charge, p the momentum, s the spin
and g the gyromagnetic ratio. Since j is a vec-
tor, its matrix elements will be nonzero only
between states of opposite parity. Magnetic
field fluctuations will then satisfy

〈0|B|0〉 = 0 (15)

but the corresponding magnetic energy density
is

em =
〈0|B2|0〉

8π
> 0 (16)

The total magnetic energy of a nucleus has
been computed in a quasiclassical approxima-
tion and with the neglect of the spin con-
tribution by Haugan and Will Haugan & Will
(1977). An approximate interpolation formula
can be found relating the matrix elements of

the current operator to the nuclear dipole ma-
trix elements and using sum rules to connect
them to the nuclear giant dipole resonance
(Haugan & Will 1977).

Em ' 3
20π

Ema

~cR

∫
σrgdE (17)

∼ 3 · 10−5Mnc2
( A
27

) 2
3

(18)

With this result, the effective energy transfer
per unit mass from the ε field to matter results

εa =
α̇

α

Em

Mc2 c2 =
α̇

α
c2ζa (19)

where

ζa ' 3 × 10−6A−
1
3 . (20)

This is a rather large energy transfer; with H0 '
2.4 × 10−18 s−1 we find

ε ∼ 2200
α̇

H0α
ζa erg/g s; (21)

of the order of magnitude of energy liberation
in the sun center (ε� ∼ 2 erg/g s) and much
greater than in the Earth or a white dwarf. This
fact open the possibility of testing Bekenstein
model through the energy liberation in “cold”
bodies: planets or dead stars.

5. Heat flow in the Earth

Heat flow in the Earth crust has been measured
since the XIX century. A good summary of the
results up to 1990 is in the book by Jessop
Jessop (1990). From the results there summa-
rized it is found that the mean heat flow is

jobs
⊕ ' (60 ± 40) mW/m2 (22)

where the standard deviation comes from the
geological scatter of data. The wheighted mean
is

j̄obs
⊕ = 69.6 ± 3.3 mW/m2 (23)

where the last number is the standard error
of the mean. From the histograms shown in
(Jessop 1990) one sees that the measured heat
flow is positive. This heat flow can be ex-
plained by decay of long lived radionucleides
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Table 1. High accuracy bounds on time variation of α

Experiment Datum/H0 Reference
Al/Hg ion clock (−1.8 ± 2.6) × 10−8 Rosenband et al. (2008)
Oklo Phenomenon (0 ± 3) × 10−8 Petrov et al. (2006)
Present Work (0 ± 4) × 10−6 —

as 238U and 232Th, in the crust and upper man-
tle. We can relate the measured heat flow to the
heat liberation (19) in the form

jan
⊕ = − K

dT
dr

∣∣∣∣∣⊕ = ε̄
m⊕

4πR2
⊕

(24)

where ε̄ is the averaged heat production.
Substituting numerical values we obtain

j⊕ ' 2.6 kW/m2
α̇

H0α
(25)

This anomalous heat flow is much larger
than the observed one by almost six orders of
magnitude. From the data we obtain
∣∣∣∣∣
α̇

H0α

∣∣∣∣∣
0
<

3σ
2.6 kW/m2

' 5 × 10−5 (26)

from the geological dispersion of the data; and∣∣∣∣∣
α̇

H0α

∣∣∣∣∣
0
< 4 × 10−6 (27)

from the mean value of the data. This should
be compared to the strongest bound obtained
from the Oklo phenomenon (Damour & Dyson
1996; Fujii 2004)∣∣∣∣∣
α̇

H0α

∣∣∣∣∣
Oklo

< 1.4 × 10−7 (28)

This bound may be refined with a careful anal-
ysis of radiactive heat generation.

6. Conclusion

Our analysis shows that the analysis of energy
conservation show several effects that can be
used to test theories that predict time variation
of fundamental constants. From these phenom-
ena, strong bounds can be found for the time
variation of α. The apparent contradiction be-
tween some indirect results and the direct mea-
surment of α at cosmological distances shows
that more research, both theoretical and obser-
vational, is needed in this field.
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